فقدان تحقیقات آزمایشگاهی کافی در تعیین خواص رئولوژیک نانوسیالات غیرنیوتنی و اثر متغیرهای مختلف مثل دما، کسر حجمی نانوذرات، اندازه ذرات و غیره بر این خواص نیز موضوع مهمی است که نیاز به تحقیقات بیشتر را نشان میدهد.
در حال حاضر دادههای آزمایشگاهی محدودی در زمینه انتقال حرارت نانوسیالات در کانالهایی با ابعاد میکرو و همچنین در زمینه انتقال حرارت جا به جایی در نانوسیالات غیرنیوتنی، وجود دارند. بنابراین در این زمینه امکان مقایسه سیستماتیک و گسترده بین نتایج تحلیلهای عددی با یافتههای آزمایشگاهی وجود ندارد و در این رابطه نیاز به تحقیقات بیشتری است.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
مراجع
Barkhordari, M., Etemad, S.Gh., “Numerical study of non-newotonian flow and Heat transfer in circular microchannels”, Proceeding of the 4th international conference on computational heat and mass transfer, Paris-Cachan france, 2005.
Maxwell, J.C., “Electricity and Magnetism“, Clarendon Press, Oxford,UK, 1873.
Tuckerman, D.B., Pease, R.F., “High performance heat sinking for VLSI”. IEEE Electron, Dev. Letts. EDL-Vol 2, 1981, pp 126–۱۲۹٫
Suo, M., Griffith, P., “Two-phase flow in capillary tubes”, J. Basic Eng, Vol 86, 1964, pp 576–۵۸۲٫
Mehendale, S.S., Jacobi, A.M., Ahah, R.K., “Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design”, Appl. Mech, Vol 53, 2000,pp 175–۱۹۳٫
Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King, M.R., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Amsterdam, 2006.
Palm, B., “Proceedings of Heat Transfer and Transport Phenomena in Microchannel”,Heat Transfer in Microchannel, Begell House Inc, Banff, Canada, 2000.
Nguyen, N.T., Werely, S.T., Fundamentals and Applications of Microfluidics, Artech House,Boston, 2002.
Kukowski, R., “MDT- Micro deforamation Technology“, ASME IMECE, Washington D.C, 2003.
Wu, P.Y., Little, W.A., “Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule Thompson refrigerators”, Cryogenics, Vol 23, No 5, 1983, pp 273–۲۷۷٫
Grigull, U., Tratz, H., “Thermischer einlauf in ausgebildeter laminarer rohrströmung”, Int. J. Heat Mass Transf, Vol 85, 1965, pp 669–۶۷۸٫
Adams, T.M., Abdel-Khalik, S.I., Jeter, M., Qureshi, Z.H., “An experimental investigation of singlephase forced convection in microchannels”, Int. J. Heat Mass Transf, Vol 41, No (6–۷), ۱۹۹۷, pp 851–۸۵۷٫
Maxwell, J.C., “A Treatise on Electricity and Magnetism“, Clarendon Press, Oxford, 1873.
Choi, S.U.S., “Enhancing thermal conductivity of fluid with nanoparticles”, Development and applications of non-Newtonian flows, ASME, FED, Vol 231/MD 66, 1995.
Pak, B.C., Cho, Y.I., “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles”, Exp. Heat Transfer, Vol 11, No2, 1998, pp 151-170.
Xuan, Y., Roetzel, W., “Conceptions for Heat Transfer Correlation of Nanofluids”, International Journal of Heat and Mass Transfer, Vol 43, No 19, 2000, pp 3701-3707.
Einstein, A., “A New Determination of the Molecular Dimensions”, Annals of Physics, Vol 324, No 2, 1906, pp 289-306.
Brinkman, H.C., “The Viscosity of Concentrated Suspensions and Solutions”, Journal of Chemical Physics, Vol 20, No 4, 1952, p 571.
Batchelor, G.K., “The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles”, Journal of Fluid Mechanics, Vol 83, No 1, 1977, pp 97-117.
Nguyen, C., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H., “Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids – Hysteresis Phenomenon”, International Journal of Heat and Fluid Flow, Vol 28, No 6, 2007, pp 1492-1506.
Yu, W., France, D.M., Choi, S.U.S., Routbort, J.L., Systems, E., “Review and Assessment of Nanofluid Technology for Transportation and Other Applications”, Argonne National Laboratory, Energy Systems Division, Argonne, Illinois, 2007.
Tseng, W.J., Lin, K., “Rheology and Colloidal Structure of Aqueous TiO2Nanoparticle Suspensions”, Materials Science and Engineering: A, Vol 355, No (1-2), 2003, pp 186-192.
Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube”, Superlattices and Microstructures, Vol 35, No (3-6), 2004, pp 543-557.
Koo, J., Kleinstreuer, C., “A New Thermal Conductivity Model for Nanofluids”, Journal of Nanoparticle Research, Vol 6, No 6, 2004, pp 577-588.
Kulkarni, D,P., Das, D.K., Chukwu, G.A., “Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)”, Journal of Nanoscience and Nanotechnology, Vol 6, 2006, pp 1150-1154.
Ozerinc, S., Kakac, S., Yazicioglu, A.G., “Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review”, Microfluid. Nanofluid, Vol 8, No 2, 2010, pp 145-170.
Hamilton, R.L., Crosser, O.K., “Thermal Conductivity of Heterogeneous Two-Component Systems”, Industrial and Engineering Chemistry Fundamentals, Vol 1, No 3, 1962, pp 187-191.
Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., Prasher, R.S., “Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids”, Journal of Applied Physics, Vol 95, No 11, 2004, pp 6492-6494.
Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S., “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement”, Applied Physics Letters, Vol 87, No 15, 2005.
Einstein, A., “Investigation on the Theory of Brownian Movement“, Dover, New York, 1956.
Evans, W., Fish, J., Keblinski, P., “Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity”, Applied Physics Letters, Vol 88, No 9, 2006, 093116-3.
Bruggeman, D.A.G., “The Calculation of Various Physical Constants of Heterogeneous Substances. I, The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances”, Annals of Physics, Vol 416, No 7, 1935, pp 636-664.
Nan, C., Birringer, R., Clarke, D.R., Gleiter, H., “Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance”, Journal of Applied Physics, Vol 81, No 10, 1997, pp 6692-6699.
Prasher, R., Phelan, P.E., Bhattacharya, P., “Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)”, Nano Letters, Vol 6, No 7, 2006, pp 1529-1534.
Xuan, Y., Li, Q., Hu, W., “Aggregation Structure and Thermal Conductivity of Nanofluids”, American Institute of Chemical Engineers Journal, Vol 49, No 4, 2003, pp 1038-1043.
Li, Q., Xuan, Y., “Experimental Investigation on Transport Properties of Nanofluids”, Heat Transfer Science and Technology 2000, B. Wang, ed, Higher Education Press, Beijing, 2000, pp 757–۷۶۲٫
Li, Y., Qu, W., Feng, J., “Temperature Dependence of Thermal Conductivity of Nanofluids”, Chinese Physics Letters, Vol 25, No 9, 2008, pp 3319-3322.
Chen, G., “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles”, Journal of Heat Transfer, Vol 118, No 3, 1996, pp 539-545.
Incropera, F.P., Dewitt, D.P., Fundamentals of heat and mass transfer, John Wiley & sons, New York, 1996.
Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids”, J.Heat Transfer, Vol 125, 2005, p 151.
Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu, G., “heat transfer properties of nanoparticle in fluid dospersions (nanofluids) in laminar flow”, Int. J. Heat Mass Transfer, Vol 48, 2005, p 1107.
Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at entrance region under laminar flow conditions”, Int. J. Heat Mass Transfer, Vol 47, 2004, p 5181.